Piano Genie

Abstract

We present Piano Genie, an intelligent controller which allows non-musicians to improvise on the piano. With Piano Genie, a user performs on a simple interface with eight buttons, and their performance is decoded into the space of plausible piano music in real time. To learn a suitable mapping procedure for this problem, we train recurrent neural network autoencoders with discrete bottlenecks: an encoder learns an appropriate sequence of buttons corresponding to a piano piece, and a decoder learns to map this sequence back to the original piece. During performance, we substitute a user’s input for the encoder output, and play the decoder’s prediction each time the user presses a button. To improve the intuitiveness of Piano Genie’s performance behavior, we impose musically meaningful constraints over the encoder’s outputs.

Publication
In the Association for Computing Machinery International Conference on Intelligent User Interfaces
Chris Donahue
Chris Donahue
Assistant Professor